If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4+5h^2=36
We move all terms to the left:
4+5h^2-(36)=0
We add all the numbers together, and all the variables
5h^2-32=0
a = 5; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·5·(-32)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*5}=\frac{0-8\sqrt{10}}{10} =-\frac{8\sqrt{10}}{10} =-\frac{4\sqrt{10}}{5} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*5}=\frac{0+8\sqrt{10}}{10} =\frac{8\sqrt{10}}{10} =\frac{4\sqrt{10}}{5} $
| -2y+4=8y—6 | | x-1/4=3x+2/6 | | 4=-8+6a | | c/5-3=7 | | x−3=−12 | | n/4-4=-8 | | (4x-14)(x+8)=180 | | 15=b/2+6 | | (5x)-24=-11 | | 9x–1x+3= | | 4u-11=-3 | | (3x+4)+(8x-12)+(x+20)=180 | | 0.666(3-6x)=-3(8x-4) | | -17p+19p+-13=3 | | n-8n=4-6-7n+2 | | -13k=(-260 | | x+3−3=−6x= | | -(-6x+5)=-8(-6x+8) | | —4x-1=-8+3x | | 4=c9 | | 6x+20=52 | | w-4.2/5=9.3/5 | | 70=6x-4x-4 | | 4.5=3(y+) | | 6x+3x=42 | | X+4y=52 | | 20k+-15=5 | | 3-2(1+2x)=1-8(x-2) | | X+4y=53 | | -5=4K-3k | | -6c+8=56 | | 2(0.5k+5)=55 |